A Bayesian probabilistic framework for avalanche modelling based on observations

29Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Applied avalanche models are based on parameters which cannot be measured directly. As a consequence, these models are associated with large uncertainties, which must be addressed in risk assessment. To this end, we present an integral probabilistic framework for the modelling of avalanche hazards. The framework is based on a deterministic dynamic avalanche model, which is combined with an explicit representation of the different parameter uncertainties. The probability distribution of these uncertainties is then determined from observations of avalanches in the area under investigation through Bayesian inference. This framework facilitates the consistent combination of physical and empirical avalanche models with the available observations and expert knowledge. The resulting probabilistic spatial model can serve as a basis for hazard maping and spatial risk assessment. In this paper, the new model is applied to a case study in a test area located in the Swiss Alps. © 2006 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Straub, D., & Grêt-Regamey, A. (2006). A Bayesian probabilistic framework for avalanche modelling based on observations. Cold Regions Science and Technology, 46(3), 192–203. https://doi.org/10.1016/j.coldregions.2006.08.024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free