Characteristics of the NO-NO(2)-O(3) system in different chemical regimes during the MIRAGE-Mex field campaign

by Z -H. Shon, S Madronich, S -K. Song, F M Flocke, D J Knapp, R S Anderson, R E Shetter, C A Cantrell, S R Hall, X Tie show all authors
Atmospheric Chemistry and Physics ()


The NO-NO(2) system was analyzed in different chemical regimes/air masses based on observations of reactive nitrogen species and peroxy radicals made during the intensive field campaign MIRAGE-Mex (4 to 29 March 2006). The air masses were categorized into 5 groups based on combinations of macroscopic observations, geographical location, meteorological parameters, models, and observations of trace gases: boundary layer (labeled as ``BL{''}), biomass burning ({''}BB{''}), free troposphere (continental, ``FTCO{''} and marine, ``FTMA{''}), and Tula industrial complex ({''}TIC{''}). In general, NO(2)/NO ratios in different air masses are near photostationary state. Analysis of this ratio can be useful for testing current understanding of tropospheric chemistry. The ozone production efficiency (OPE) for the 5 air mass categories ranged from 4.5 (TIC) to 8.5 (FTMA), consistent with photochemical aging of air masses exiting the Mexico City Metropolitan Area.

Cite this document (BETA)

Page 1
Page 2

Readership Statistics

15 Readers on Mendeley
by Discipline
by Academic Status
40% Researcher (at an Academic Institution)
33% Ph.D. Student
7% Student (Postgraduate)
by Country
13% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in