Skip to content

A decadal satellite analysis of the origins and impacts of smoke in Colorado

by M. Val Martin, C. L. Heald, B. Ford, A. J. Prenni, C. Wiedinmyer
Atmospheric Chemistry and Physics ()
Get full text at journal


We analyze the record of aerosol optical depth (AOD) measured by the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite in combination with surface PM2.5 to investigate the impact of fires on aerosol loading and air quality over Colorado from 2000 to 2012, and to evaluate the contribution of local versus transported smoke. Fire smoke contributed significantly to the AOD levels observed over Colorado. During the worst fire seasons of 2002 and 2012, average MODIS AOD over the Colorado Front Range corridor were 20-50% larger than the other 11 yr studied. Surface PM2.5 was also unusually elevated during fire events and concentrations were in many occasions above the daily National Ambient Air Quality Standard (35 mu g m(-3)) and even reached locally unhealthy levels (> 100 mu g m(-3)) over populated areas during the 2012 High Park fire and the 2002 Hayman fire. Over the 13 yr examined, long-range transport of smoke from northwestern US and even California (> 1500 km distance) occurred often and affected AOD and surface PM2.5. During most of the transport events, MODIS AOD and surface PM2.5 were reasonable correlated (r(2) = 0.2-0.9), indicating that smoke subsided into the Colorado boundary layer and reached surface levels. However, that is not always the case since at least one event of AOD enhancement was disconnected from the surface (r(2) < 0.01 and low PM2.5 levels). Observed plume heights from the Multi-angle Imaging SpectroRadiometer (MISR) satellite instrument and vertical aerosol profiles measured by the space-based Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) showed a complex vertical distribution of smoke emitted by the High Park fire in 2012. Smoke was detected from a range of 1.5 to 7.5 km altitude at the fire origin and from ground levels to 12.3 km altitude far away from the source. The variability of smoke altitude as well as the local meteorology were key in determining the aerosol loading and air quality over the Colorado Front Range region. Our results underline the importance of accurate characterization of the vertical distribution of smoke for estimating the air quality degradation associated with fire activity and its link to human health.

Cite this document (BETA)

Readership Statistics

27 Readers on Mendeley
by Discipline
44% Environmental Science
44% Earth and Planetary Sciences
4% Agricultural and Biological Sciences
by Academic Status
26% Student > Ph. D. Student
22% Researcher
15% Professor > Associate Professor
by Country
4% India
4% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in