Skip to content

Development of a simple unified volatility-based scheme (SUVS) for secondary organic aerosol formation using genetic algorithms

by A. G. Xia, C. A. Stroud, P. A. Makar
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

A new method is proposed to simplify complex atmospheric chemistry reaction schemes, while preserving SOA formation properties, using genetic algorithms. The method is first applied in this study to the gas-phase α-pinene oxidation scheme. The simple unified volatility-based scheme (SUVS) reflects the multi-generation evolution of chemical species from a near-explicit master chemical mechanism (MCM) and, at the same time, uses the volatility-basis set speciation for condensable products. The SUVS also unifies reactions between SOA precursors with different oxidants under different atmospheric conditions. A total of 412 unknown parameters (product yields of parameterized products, reaction rates, etc.) from the SUVS are estimated by using genetic algorithms operating on the detailed mechanism. The number of organic species was reduced from 310 in the detailed mechanism to 31 in the SUVS. Output species profiles, obtained from the original subset of the MCM reaction scheme for α-pinene oxidation, are reproduced with maximum fractional error at 0.10 for scenarios under a wide range of ambient HC/NOx conditions. Ultimately, the same SUVS with updated parameters could be used to describe the SOA formation from different precursors. © 2011 Author(s).

Cite this document (BETA)

Readership Statistics

8 Readers on Mendeley
by Discipline
 
38% Chemistry
 
25% Environmental Science
 
25% Earth and Planetary Sciences
by Academic Status
 
63% Researcher
 
13% Other
 
13% Professor

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in