Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model

by A. Pozzer, A. De Meij, K. J. Pringle, H. Tost, U. M. Doering, J. Van Aardenne, J. Lelieveld
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

The new global anthropogenic emission inventory (EDGAR-CIRCE) of gas and aerosol pollutants has been incorporated in the chemistry general circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry). A relatively high horizontal resolution simulation is performed for the years 2005-2008 to evaluate the capability of the model and the emissions to reproduce observed aerosol concentrations and aerosol optical depth (AOD) values. Model output is compared with observations from different measurement networks (CASTNET, EMEP and EANET) and AODs from remote sensing instruments (MODIS and MISR). A good spatial agreement of the distribution of sulfate and ammonium aerosol is found when compared to observations, while calculated nitrate aerosol concentrations show some discrepancies. The simulated temporal development of the inorganic aerosols is in line with measurements of sulfate and nitrate aerosol, while for ammonium aerosol some deviations from observations occur over the USA, due to the wrong temporal distribution of ammonia gas emissions. The calculated AODs agree well with the satellite observations in most regions, while negative biases are found for the equatorial area and in the dust outflow regions (i.e. Central Atlantic and Northern Indian Ocean), due to an underestimation of biomass burning and aeolian dust emissions, respectively. Aerosols and precursors budgets for five different regions (North America, Europe, East Asia, Central Africa and South America) are calculated. Over East-Asia most of the emitted aerosols (precursors) are also deposited within the region, while in North America and Europe transport plays a larger role. Further, it is shown that a simulation with monthly varying anthropogenic emissions typically improves the temporal correlation by 5-10% compared to one with constant annual emissions.

Cite this document (BETA)

Authors on Mendeley

Readership Statistics

16 Readers on Mendeley
by Discipline
 
 
by Academic Status
 
31% Post Doc
 
25% Ph.D. Student
 
13% Researcher (at a non-Academic Institution)
by Country
 
6% Germany
 
6% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in