Droplet splashing by a slingshot mechanism

75Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.
Get full text

Abstract

When a drop impacts onto a liquid pool, it ejects a thin horizontal sheet of liquid, which emerges from the neck region connecting the two liquid masses. The leading section of this ejecta bends down to meet the pool liquid. When the sheet touches the pool, at an "elbow," it ruptures and sends off microdroplets by a slingshot mechanism, driven by surface tension. High-speed imaging of the splashing droplets suggests the liquid sheet is of submicron thickness, as thin as 300 nm. Experiments in partial vacuum show that air resistance plays the primary role in bending the sheet. We identify a parameter regime where this slingshot occurs and also present a simple model for the sheet evolution, capable of reproducing the overall shape. © 2011 American Physical Society.

Cite

CITATION STYLE

APA

Thoroddsen, S. T., Thoraval, M. J., Takehara, K., & Etoh, T. G. (2011). Droplet splashing by a slingshot mechanism. Physical Review Letters, 106(3). https://doi.org/10.1103/PhysRevLett.106.034501

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free