Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy

131Citations
Citations of this article
184Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The An+1 Bn O3n+1 Ruddlesden-Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of the intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden-Popper phases. We demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La3 Ni2 O7. © 2014 Macmillan Publishers Limited.

Cite

CITATION STYLE

APA

Lee, J. H., Luo, G., Tung, I. C., Chang, S. H., Luo, Z., Malshe, M., … Freeland, J. W. (2014). Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nature Materials, 13(9), 879–883. https://doi.org/10.1038/nmat4039

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free