Effective elastic modulus of isolated gecko setal arrays

280Citations
Citations of this article
214Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Conventional pressure sensitive adhesives (PSAs) are fabricated from soft viscoelastic materials that satisfy Dahlquist's criterion for tack with a Young's modulus (E) of 100 kPa or less at room temperature and 1 Hz. In contrast, the adhesive on the toes of geckos is made of β-keratin, a stiff material with E at least four orders of magnitude greater than the upper limit of Dahlquist's criterion. Therefore, one would not expect a β-keratin structure to function as a PSA by deforming readily to make intimate molecular contact with a variety of surface profiles. However, since the gecko adhesive is a microstructure in the form of an array of millions of high aspect ratio shafts (setae), the effective elastic modulus (Eeff) is much lower than E of bulk β-keratin. In the first test of the Eeff of a gecko setal adhesive, we measured the forces resulting from deformation of isolated arrays of tokay gecko (Gekko gecko) setae during vertical compression, and during tangential compression at angles of +45° and -45°. We tested the hypothesis that Eeff of gecko setae falls within Dahlquist's criterion for tack, and evaluated the validity of a model of setae as cantilever beams. Highly linear forces of deformation under all compression conditions support the cantilever model. Eeff of setal arrays during vertical and +45° compression (along the natural path of drag of the setae) were 83±4.0 kPa and 86±4.4 kPa (means ± s.e.m.), respectively. Consistent with the predictions of the cantilever model, setae became significantly stiffer when compressed against the natural path of drag: E eff during -45° compression was 110±4.7 kPa. Unlike synthetic PSAs, setal arrays act as Hookean elastic solids; setal arrays function as a bed of springs with a directional stiffness, assisting alignment of the adhesive spatular tips with the contact surface during shear loading.

Cite

CITATION STYLE

APA

Autumn, K., Majidi, C., Groff, R. E., Dittmore, A., & Fearing, R. (2006). Effective elastic modulus of isolated gecko setal arrays. Journal of Experimental Biology, 209(18), 3558–3568. https://doi.org/10.1242/jeb.02469

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free