Skip to content

Effects of the anesthetic agent propofol on neural populations

by Axel Hutt, Andre Longtin
Cognitive Neurodynamics ()
Get full text at journal

Abstract

The neuronal mechanisms of general anesthesia are still poorly understood. Besides several characteristic features of anesthesia observed in experiments, a prominent effect is the bi-phasic change of power in the observed electroencephalogram (EEG), i.e. the initial increase and subsequent decrease of the EEG-power in several frequency bands while increasing the concentration of the anaesthetic agent. The present work aims to derive analytical conditions for this bi-phasic spectral behavior by the study of a neural population model. This model describes mathematically the effective membrane potential and involves excitatory and inhibitory synapses, excitatory and inhibitory cells, nonlocal spatial interactions and a finite axonal conduction speed. The work derives conditions for synaptic time constants based on experimental results and gives conditions on the resting state stability. Further the power spectrum of Local Field Potentials and EEG generated by the neural activity is derived analytically and allow for the detailed study of bi-spectral power changes. We find bi-phasic power changes both in monostable and bistable system regime, affirming the omnipresence of bi-spectral power changes in anesthesia. Further the work gives conditions for the strong increase of power in the δ-frequency band for large propofol concentrations as observed in experiments.

Cite this document (BETA)

Readership Statistics

30 Readers on Mendeley
by Discipline
 
33% Agricultural and Biological Sciences
 
20% Medicine and Dentistry
 
17% Physics and Astronomy
by Academic Status
 
33% Researcher
 
33% Student > Ph. D. Student
 
10% Student > Postgraduate
by Country
 
7% United States
 
3% Germany
 
3% United Kingdom

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in