Skip to content

Effects of biogenic nitrate chemistry on the NOx lifetime in remote continental regions

by E. C. Browne, R. C. Cohen
Atmospheric Chemistry and Physics ()
Get full text at journal


We present an analysis of the NO x budget in con-ditions of low NO x (NO x = NO + NO 2) and high biogenic volatile organic compound (BVOC) concentrations that are characteristic of most continental boundary layers. Using a steady-state model, we show that below 500 pptv of NO x , the NO x lifetime is extremely sensitive to organic nitrate (RONO 2) formation rates. We find that even for RONO 2 for-mation values that are an order of magnitude smaller than is typical for continental conditions significant reductions in NO x lifetime, and consequently ozone production efficiency, are caused by nitrate forming reactions. Comparison of the steady-state box model to a 3-D chemical transport model (CTM) confirms that the concepts illustrated by the simpler model are a useful approximation of predictions provided by the full CTM. This implies that the regional and global bud-gets of NO x , OH, and ozone will be sensitive to assumptions regarding organic nitrate chemistry. Changes in the budgets of these species affect the representation of processes impor-tant to air quality and climate. Consequently, CTMs must in-clude an accurate representation of organic nitrate chemistry in order to provide accurate assessments of past, present, and future air quality and climate. These findings suggest the need for further experimental constraints on the formation and fate of biogenic RONO 2 .

Cite this document (BETA)

Readership Statistics

38 Readers on Mendeley
by Discipline
42% Earth and Planetary Sciences
24% Environmental Science
18% Chemistry
by Academic Status
29% Student > Ph. D. Student
21% Researcher
16% Professor > Associate Professor
by Country
13% United States
3% Germany
3% China

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in