Electromagnetic determination of soil water content: Measurements in coaxial transmission lines

by G. C. Topp, J. L. Davis, a. P. Annan
Water Resources Research ()


The dependence of the dielectric constant, at frequencies between 1 MHz and 1 GHz, on the volumetric water content is determined empirically in the laboratory. The effect of varying the texture, bulk density, temperature, and soluble salt content on this relationship was also determined. Time-domain reflectrometry (TDR) was used to measure the dielectric constant of a wide range of granular specimens placed in a coaxial transmission line. The water or salt solution was cycled continuously to or from the specimen, with minimal disturbance, through porous disks placed along the sides of the coaxial tube. Four mineral soils with a range of texture from sandy loam to clay were tested. An emperical relationship between the apparent dielectirc constant Ka and the volumetric water constant, which is independent of soil type, soil density, soil temperature, and soluble salt content, can be used to determine volumetric water content, from air dry to water saturated, with an error estimate of 0.013. Precision of volumetric water content, to within +-0.01 from Ka can be obtained with a calibration for the particular granular material of interest. An organic soil, vermiculite, and two sizes of glass beads were also tested successfully. The empirical relationship determined here agrees very well with other experimenters' results, which use a wide range of electrical techniques over the frequency range of 20MHz and 1 GHz and widely varying soil types. The results of applying the TDR technique on parallel transmission lines in the field to measure volumetric water content versus depth are encouraging.

Cite this document (BETA)

Readership Statistics

1 Reader on Mendeley

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in