Skip to content

Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum

by Eric C. Mattson, Haihui Pu, Shumao Cui, Marvin A. Schofield, Sonny Rhim, Ganhua Lu, Michael J. Nasse, Rodney S. Ruoff, Michael Weinert, Marija Gajdardziska-Josifovska, Junhong Chen, Carol J. Hirschmugl show all authors
ACS Nano ()
Get full text at journal


As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.

Cite this document (BETA)

Readership Statistics

64 Readers on Mendeley
by Discipline
28% Chemistry
27% Physics and Astronomy
23% Materials Science
by Academic Status
25% Student > Ph. D. Student
23% Researcher
17% Student > Master
by Country
5% Germany
5% United Kingdom
2% Croatia

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in