Exploring causes of interannual variability in the seasonal cycles of tropospheric nitrous oxide

by C. D. Nevison, E. Dlugokencky, G. Dutton, J. W. Elkins, P. Fraser, B. Hall, P. B. Krummel, R. L. Langenfelds, S. O'Doherty, R. G. Prinn, L. P. Steele, R. F. Weiss show all authors
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

Seasonal cycles in the mixing ratios of tropospheric nitrous oxide (N2O) are derived by detrending long-term measurements made at sites across four global surface monitoring networks. The detrended monthly data display large interannual variability, which at some sites challenges the concept of a "mean" seasonal cycle. In the Northern Hemisphere, correlations between polar winter lower stratospheric temperature and detrended N2O data, around the month of the seasonal minimum, provide empirical evidence for a stratospheric influence, which varies in strength from year to year and can explain much of the interannual variability in the surface seasonal cycle. Even at sites where a strong, competing, regional N2O source exists, such as from coastal upwelling at Trinidad Head, California, the stratospheric influence must be understood to interpret the biogeochemical signal in monthly mean data. In the Southern Hemisphere, detrended surface N2O monthly means are correlated with polar spring lower stratospheric temperature in months preceding the N2O minimum, providing empirical evidence for a coherent stratospheric influence in that hemisphere as well, in contrast to some recent atmospheric chemical transport model (ACTM) results. Correlations between the phasing of the surface N2O seasonal cycle in both hemispheres and both polar lower stratospheric temperature and polar vortex break-up date provide additional support for a stratospheric influence. The correlations discussed above are generally more evident in high-frequency in situ data than in data from weekly flask samples. Furthermore, the interannual variability in the N2O seasonal cycle is not always correlated among in situ and flask networks that share common sites, nor do the mean seasonal amplitudes always agree. The importance of abiotic influences such as the stratospheric influx and tropospheric transport on N2O seasonal cycles suggests that, at sites remote from local sources, surface N2O mixing ratio data by themselves are unlikely to provide information about seasonality in surface sources, e. g., for atmospheric inversions, unless the ACTMs employed in the inversions accurately account for these influences. An additional abioitc influence is the seasonal ingassing and outgassing of cooling and warming surface waters, which creates a thermal signal in tropospheric N2O that is of particular importance in the extratropical Southern Hemisphere, where it competes with the biological ocean source signal.

Cite this document (BETA)

Authors on Mendeley

Readership Statistics

25 Readers on Mendeley
by Discipline
 
56% Earth and Planetary Sciences
 
24% Environmental Science
 
8% Chemistry
by Academic Status
 
48% Researcher
 
20% Student > Ph. D. Student
 
8% Professor
by Country
 
8% Switzerland
 
4% Germany

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in