Foreshocks explained by cascades of triggered seismicity

  • Helmstetter A
  • Sornette D
145Citations
Citations of this article
87Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The observation of foreshocks preceding large earthquakes and the suggestion that foreshocks have specific properties that may be used to distinguish them from other earthquakes have raised the hope that large earthquakes may be predictable. Among proposed anomalous properties are the larger proportion than normal of large versus small foreshocks, the power law acceleration of seismicity rate as a function of time to the mainshock and the spatial migration of foreshocks toward the mainshock, when averaging over many sequences. Using Southern California seismicity, we show that these properties and others arise naturally from the simple model that any earthquake may trigger other earthquakes, without arbitrary distinction between foreshocks, aftershocks and mainshocks. We find that foreshocks precursory properties are independent of the mainshock size. This implies that earthquakes (large or small) are predictable to the same degree as seismicity rate is predictable from past seismicity by taking into account cascades of triggering. The cascades of triggering give rise naturally to long-range and long-time interactions, which can explain the observations of correlations in seismicity over surprisingly large length scales.

Cite

CITATION STYLE

APA

Helmstetter, A., & Sornette, D. (2003). Foreshocks explained by cascades of triggered seismicity. Journal of Geophysical Research: Solid Earth, 108(B10). https://doi.org/10.1029/2003jb002409

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free