Skip to content

A Gaussian mixture PHD filter for jump Markov system models

by Syed Ahmed Pasha, Ba Ngu Vo, Hoang Duong Tuan, Wing Kin Ma
IEEE Transactions on Aerospace and Electronic Systems ()
Get full text at journal


The probability hypothesis density (PHD) filter is an attractive approach to tracking an unknown and time-varying number of targets in the presence of data association uncertainty, clutter, noise, and detection uncertainty. The PHD filter admits a closed-form solution for a linear Gaussian multi-target model. However, this model is not general enough to accommodate maneuvering targets that switch between several models. In this paper, we generalize the notion of linear jump Markov systems to the multiple target case to accommodate births, deaths, and switching dynamics. We then derive a closed-form solution to the PHD recursion for the proposed linear Gaussian jump Markov multi-target model. Based on this an efficient method for tracking multiple maneuvering targets that switch between a set of linear Gaussian models is developed. An analytic implementation of the PHD filter using statistical linear regression technique is also proposed for targets that switch between a set of nonlinear models. We demonstrate through simulations that the proposed PHD filters are effective in tracking multiple maneuvering targets.

Cite this document (BETA)

Readership Statistics

39 Readers on Mendeley
by Discipline
67% Engineering
18% Computer Science
8% Mathematics
by Academic Status
46% Student > Ph. D. Student
21% Researcher
13% Student > Master
by Country
3% Germany
3% Australia
3% Malaysia

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in