Genetics of body condition score in New Zealand dairy cows

66Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.

Abstract

Body condition score (BCS) data were collected on 169,661 first-parity cows from herds participating in progeny testing schemes and linear type assessment. Genetic and residual variances for BCS estimated across time using a quadratic random regression model were found to be largest at the start of lactation. Heritability estimates ranged from 0.32 to 0.23 from d 1 to 200 of lactation, with a mean of 0.26. Genetic correlations between BCS and other traits were estimated using 2 approaches: 1) a multivariate analysis that included BCS and live weight, both adjusted for stage of lactation; 270-d cumulative yields of milk, fat, and protein; average somatic cell score; and 2 measures of fertility; and 2) a bivariate random regression analysis in which BCS was considered to be a longitudinal trait across time, with the same measurements as in approach 1 for all other traits. Genetic correlations of BCS with the 2 fertility traits were 0.43 and 0.50 using the multivariate analysis; the corresponding random regression estimates between BCS as a longitudinal trait across time and 2 measures of fertility were 0.35 to 0.44 and 0.40 to 0.49, and tended to increase with stage of lactation. Genetic correlations estimated using the random regression model fluctuated around the multivariate estimates for live weight and somatic cell score, which were 0.50 and -0.12, respectively. Genetic correlations estimated using the multivariate analysis of BCS with fat and protein yields were close to zero. With the random regression model, genetic correlations between BCS and fat and protein yields were positive at d 1 of lactation (0.16 and 0.08, respectively) and were negative by d 200 of lactation (-0.25 and -0.20, respectively). In pastoral production systems, such as those typical in New Zealand, there appears to be an advantage in the total lactation yields of fat and protein for cows of higher BCS in early lactation, which is likely to be because these cows have body reserves that are available to be mobilized in later lactation, when feed resources are sometimes limited. © American Dairy Science Association, 2006.

Cite

CITATION STYLE

APA

Pryce, J. E., & Harris, B. L. (2006). Genetics of body condition score in New Zealand dairy cows. Journal of Dairy Science, 89(11), 4424–4432. https://doi.org/10.3168/jds.S0022-0302(06)72490-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free