Skip to content

Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates and peroxides

by G. Lin, J. E. Penner, S. Sillman, D. Taraborrelli, J. Lelieveld
Atmospheric Chemistry and Physics ()
Get full text at journal


Recent experimental findings indicate that secondary organic aerosol (SOA) represents an important and, under many circumstances, the major fraction of the organic aerosol burden. Here, we use a global 3-D model (IMPACT) to test the results of different mechanisms for the production of SOA. The basic mechanism includes SOA formation from organic nitrates and peroxides produced from an explicit chemical formulation, using partition coefficients based on thermodynamic principles together with assumptions for the rate of formation of low-volatility oligomers. We also include the formation of low-volatility SOA from the reaction of glyoxal and methylglyoxal on aqueous aerosols and cloud droplets as well as from the reaction of epoxides on aqueous aerosols. A model simulation including these SOA formation mechanisms gives an annual global SOA production of 120.5 Tg. The global production of SOA is decreased substantially to 90.8 Tg yr(-1) if the HOx regeneration mechanism proposed by Peeters et al. (2009) is used. Model predictions with and without this HOx (OH and HO2 regeneration scheme are compared with multiple surface observation datasets, namely: the Interagency Monitoring of Protected Visual Environments (IMPROVE) for the United States, the European Monitoring and Evaluation Programme (EMEP), and aerosol mass spectrometry (AMS) data measured in both the Northern Hemisphere and tropical forest regions. All model simulations show reasonable agreement with the organic carbon mass observed in the IMPROVE network and the AMS dataset, however observations in Europe are significantly underestimated, which may be caused by an underestimation of primary organic aerosol emissions (POA) in winter and of emissions and/or SOA production in the summer. The modeled organic aerosol concentrations tend to be higher by roughly a factor of three when compared with measurements at three tropical forest sites. This overestimate suggests that more measurements and model studies are needed to examine the formation of organic aerosols in the tropics. The modeled organic carbon (OC) in the free troposphere is in agreement with measurements in the ITCT-2K4 aircraft campaign over North America and in pollution layers off Asia during the INTEX-B campaign, although the model underestimates OC in the free troposphere in comparison with the ACE-Asia campaign off the coast of Japan.

Cite this document (BETA)

Readership Statistics

35 Readers on Mendeley
by Discipline
43% Environmental Science
29% Earth and Planetary Sciences
17% Chemistry
by Academic Status
29% Researcher
29% Student > Ph. D. Student
11% Student > Master
by Country
11% United States
6% United Kingdom
3% Germany

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in