The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

by A. R. Berg, C. L. Heald, K. E. Huff Hartz, A. G. Hallar, A. J H Meddens, J. A. Hicke, J. F. Lamarque, S. Tilmes
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km(2) of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations) in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the western United States.

Cite this document (BETA)

Readership Statistics

12 Readers on Mendeley
by Discipline
 
33% Earth Sciences
 
33% Biological Sciences
 
17% Environmental Sciences
by Academic Status
 
42% Post Doc
 
33% Ph.D. Student
 
8% Librarian
by Country
 
8% Germany
 
8% United Kingdom
 
8% Canada

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in