Skip to content

Implementation of dust emission and chemistry into the Community Multiscale Air Quality modeling system and initial application to an Asian dust storm episode

by K. Wang, Y. Zhang, A. Nenes, C. Fountoukis
Atmospheric Chemistry and Physics ()
Get full text at journal


The US Environmental Protection Agency's (EPA) Community Multiscale Air Quality (CMAQ) modeling system version 4.7 is further developed to enhance its capability in simulating the photochemical cycles in the presence of dust particles. The new model treatments implemented in CMAQ v4.7 in this work include two online dust emission schemes (i.e., the Zender and Westphal schemes), nine dust-related heterogeneous reactions, an updated aerosol inorganic thermodynamic module ISORROPIA II with an explicit treatment of crustal species, and the interface between ISORROPIA II and the new dust treatments. The resulting improved CMAQ (referred to as CMAQ-Dust), offline-coupled with the Weather Research and Forecast model (WRF), is applied to the April 2001 dust storm episode over the trans-Pacific domain to examine the impact of new model treatments and understand associated uncertainties. WRF/CMAQ-Dust produces reasonable spatial distribution of dust emissions and captures the dust outbreak events, with the total dust emissions of similar to 111 and 223 Tg when using the Zender scheme with an erodible fraction of 0.5 and 1.0, respectively. The model system can reproduce well observed meteorological and chemical concentrations, with significant improvements for suspended particulate matter (PM), PM with aerodynamic diameter of 10 mu m, and aerosol optical depth than the default CMAQ v4.7. The sensitivity studies show that the inclusion of crustal species reduces the concentration of PM with aerodynamic diameter of 2.5 mu m (PM2.5) over polluted areas. The heterogeneous chemistry occurring on dust particles acts as a sink for some species (e. g., as a lower limit estimate, reducing O-3 by up to 3.8 ppb (similar to 9 %) and SO2 by up to 0.3 ppb (similar to 27 %)) and as a source for some others (e. g., increasing fine-mode SO42- by up to 1.1 mu g m(-3) (similar to 12 %) and PM2.5 by up to 1.4 mu g m(-3) (similar to 3 %)) over the domain. The long-range transport of Asian pollutants can enhance the surface concentrations of gases by up to 3% and aerosol species by up to 20% in the Western US.

Cite this document (BETA)

Readership Statistics

22 Readers on Mendeley
by Discipline
59% Earth and Planetary Sciences
32% Environmental Science
5% Agricultural and Biological Sciences
by Academic Status
27% Student > Ph. D. Student
27% Researcher
14% Professor > Associate Professor
by Country
5% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in