The influence of high heeled shoes on kinematics, kinetics, and muscle EMG of normal female gait

89Citations
Citations of this article
127Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The purpose of this investigation was to determine whether a graded response in gait kinematics, kinetics, and EMG occurs as shoe heel height increases. Four different shoes, including one flat shoe and three shoes with high heels, were tested in this investigation. The average heel heights of the four shoes were 1.4 cm, 3.7 cm, 5.4 cm, and 8.5 cm. Kinematics, kinetics, and muscle EMG were measured during the stance phase of gait on 13 healthy female subjects while wearing each of these 4 shoes. Systematic increases in the active vertical, propulsive, and braking forces were found as shoe height increased. Ankle and knee flexion and soleus and rectus femoris activity showed a graded response as heel height increased. One surprising result was the behavior of the maximal vertical impact force peak and the maximal loading rate during heel impact. The vertical impact force peaks and the maximal vertical loading rates were highest for the shoe with 3.7 cm heel height and lowest for the flat shoe and the shoe with heel height of 8.5 cm.

Cite

CITATION STYLE

APA

Stefanyshyn, D. J., Nigg, B. M., Fisher, V., O’Flynn, B., & Liu, W. (2000). The influence of high heeled shoes on kinematics, kinetics, and muscle EMG of normal female gait. Journal of Applied Biomechanics, 16(3), 309–319. https://doi.org/10.1123/jab.16.3.309

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free