Skip to content

The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs.

by Vlastimil Krivan
The American naturalist ()
Get full text at journal


This article studies the effects of adaptive changes in predator and/or prey activities on the Lotka-Volterra predator-prey population dynamics. The model assumes the classical foraging-predation risk trade-offs: increased activity increases population growth rate, but it also increases mortality rate. The model considers three scenarios: prey only are adaptive, predators only are adaptive, and both species are adaptive. Under all these scenarios, the neutral stability of the classical Lotka-Volterra model is partially lost because the amplitude of maximum oscillation in species numbers is bounded, and the bound is independent of the initial population numbers. Moreover, if both prey and predators behave adaptively, the neutral stability can be completely lost, and a globally stable equilibrium would appear. This is because prey and/or predator switching leads to a piecewise constant prey (predator) isocline with a vertical (horizontal) part that limits the amplitude of oscillations in prey and predator numbers, exactly as suggested by Rosenzweig and MacArthur in their seminal work on graphical stability analysis of predator-prey systems. Prey and predator activities in a long-term run are calculated explicitly. This article shows that predictions based on short-term behavioral experiments may not correspond to long-term predictions when population dynamics are considered.

Cite this document (BETA)

Readership Statistics

80 Readers on Mendeley
by Discipline
73% Agricultural and Biological Sciences
16% Environmental Science
6% Mathematics
by Academic Status
36% Researcher
35% Student > Ph. D. Student
9% Professor > Associate Professor
by Country
4% India
4% United States
3% United Kingdom

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in