Millikelvin cooling of an optically trapped microsphere in vacuum

424Citations
Citations of this article
350Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cooling of micromechanical resonators towards the quantum mechanical ground state in their centre-of-mass motion has advanced rapidly in recent years 1-8 . This work is an important step towards the creation of Schrödinger cats, quantum superpositions of macroscopic observables, and the study of their destruction by decoherence. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the centre-of-mass motion from room temperature to a minimum temperature of about 1.5 mK. This new system eliminates the physical contact inherent to clamped cantilevers, and can allow ground-state cooling from room temperature 9-15 . More importantly, the optical trap can be switched off, allowing a microsphere to undergo free-fall in vacuum after cooling 15 . This is ideal for studying the gravitational state reduction, a manifestation of the apparent conflict between general relativity and quantum mechanics 16,20 . A cooled optically trapped object in vacuum can also be used to search for non-Newtonian gravity forces at small scales 21 , measure the impact of a single air molecule and even produce Schrödinger cats of living organisms 9 . © 2011 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Li, T., Kheifets, S., & Raizen, M. G. (2011). Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Physics, 7(7), 527–530. https://doi.org/10.1038/nphys1952

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free