A Model of Grid Cells Based on a Path Integration Mechanism

by Alexis Guanella, Paul Verschure
Artificial Neural Networks --ICANN 2006 ()
Get full text at journal

Abstract

The grid cells of the dorsocaudal medial entorhinal cortex (dMEC) in rats show higher firing rates when the position of the animal correlates with the vertices of regular triangular tessellations covering the environment. Strong evidence indicates that these neurons are part of a path integration system. This raises the question, how such a system could be implemented in the brain. Here, we present a cyclically connected artificial neural network based on a path integration mechanism, implementing grid cells on a simulated mobile agent. Our results show that the synaptic connectivity of the network, which can be represented by a twisted torus, allows the generation of regular triangular grids across the environment. These tessellations share same spacing and orientation, as neighboring grid cells in the dMEC. A simple gain and bias mechanism allows to control the spacing and the orientation of the grids, which suggests that these different characteristics can be generated by a unique algorithm in the brain. Keywords: grid cells, entorhinal cortex, path integration, twisted torus.

Cite this document (BETA)

Readership Statistics

2 Readers on Mendeley
by Discipline
 
100% Biological Sciences
by Academic Status
 
50% Ph.D. Student
 
50% Post Doc
by Country
 
50% Spain

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in