Skip to content

A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal

by J. Li, Y. Hu, J. Huang, K. Stamnes, Y. Yi, S. Stamnes
Atmospheric Chemistry and Physics ()
Get full text at journal


A method is developed based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) level 1 attenuated backscatter profile data for deriving the mean extinction coefficient of water droplets close to cloud top. The method is applicable to low level (cloud top < 2 km), opaque water clouds in which the lidar signal is completely attenuated beyond about 100 m of penetration into the cloud. The photo multiplier tubes (PMTs) of the 532 nm detectors (parallel and perpendicular polarizations) of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) both exhibit a non-ideal recovery of the lidar signal after striking a strongly backscattering target (such as water cloud or surface). Therefore, the effects of any transient responses of CALIOP on the attenuated backscatter profile of the water cloud must first be removed in order to obtain a reliable (validated) attenuated backscatter profile. Then, the slope of the exponential decay of the validated water cloud attenuated backscatter profile, and the multiple scattering factor are used for deriving the mean extinction coefficient of low-level water cloud droplets close to cloud top. This novel method was evaluated and compared with the previous method which combined the cloud effective radius (3.7-mu m) reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate the mean extinction coefficient. Statistical results show that the extinction coefficients derived by the new method based on CALIOP alone agree reasonbably well with those obtained in the previous study using combined CALIOP and MODIS data. The mean absolute relative difference in extinction coefficient is about 13.4%. An important advantage of the new method is that it can be used to derive the extinction coefficient also during night time, and it is also applicable when multi-layered clouds are present. Overall, the stratocumulus dominated regions experience larger day-night differences which are all negative and seasonal. However, a contrary tendency consisted in the global mean values. The global mean cloud water extinction coefficients during different seasons range from 26 to 30 km(-1), and the differences between day and night time are all positive and small (about 1-2 km(-1)). In addition, the global mean layer-integrated depolarization ratios of liquid water clouds during different seasons range from 0.2 to 0.23, and the differences between day and night also are small, about 0.01.

Cite this document (BETA)

Readership Statistics

10 Readers on Mendeley
by Discipline
50% Earth and Planetary Sciences
30% Environmental Science
10% Chemistry
by Academic Status
20% Student > Ph. D. Student
20% Professor
10% Student > Bachelor
by Country
10% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in