Skip to content

Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

by J. R. Ziemke, J. Joiner, S. Chandra, P. K. Bhartia, A. Vasilkov, D. P. Haffner, K. Yang, M. R. Schoeberl, L. Froidevaux, P. F. Levelt show all authors
Atmospheric Chemistry and Physics Discussions ()
Get full text at journal


We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We use the measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratio inside deep convective clouds often exceeds 50 ppbv which is comparable to mean background (cloud-free) concentrations. These areas contain higher amounts of ozone precursors due to biomass burning and lightning. Assuming that O3 is well mixed (i.e. constant mixing ratio with height) up to the tropopause, we can estimate the stratospheric column O3 over clouds. Stratospheric column ozone derived in this manner agrees well with that retrieved independently with the Aura Microwave Limb Sounder (MLS) instrument and thus provides a consistency check of our method.

Cite this document (BETA)

Readership Statistics

21 Readers on Mendeley
by Discipline
48% Earth and Planetary Sciences
24% Environmental Science
19% Physics and Astronomy
by Academic Status
57% Researcher
29% Student > Ph. D. Student
5% Other
by Country
10% India

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in