Primary and secondary organic carbon downwind of Mexico City

by X-Y Yu, R A Cary, N S Laulainen
Atmospheric Chemistry and Physics ()
  • ISSN: 1680-7316, 1680-7316

Abstract

In order to study particulate matter transport and transformation in the Megacity environment, fine particulate carbon was measured simultaneously at two supersites, suburban T1 and rural T2, downwind of Mexico City during the MILAGRO field campaign in March 2006. Organic carbon (OC), element carbon (EC), and total carbon (TC=OC+EC) were determined in near real-time using a Sunset semi-continuous OCEC field analyzer. The semi-empirical EC tracer method was used to derive primary organic carbon (POC) and secondary organic carbon (SOC). Diurnal variations of primary and secondary carbon were observed at T1 and T2, which resulted from boundary layer inversion and impacted by local traffic patterns. The majority of organic carbon particles at T1 and T2 were secondary. The SOC sub(TC)% (SOC%=SOC/TC100%) at T1 ranged from 0.5-93.8% with an average of 63.5 plus or minus 17.2%. The SOC sub(TC)% at T2 ranged from 9.3-98.1% with an average of 67.4 plus or minus 12.4%. The average EC to PM sub(2.5) percentage (EC sub(PM)%=EC/PM sub(2.5)&#x00D 7; 100%) and OC sub(PM)% were 6.0% and 20.0% over the whole sampling time at T1. The POC to PM percentage (POC sub(PM)%) and SOC sub(PM)% were 3.7% and 16.3%, respectively at the same site. The maximum EC sub(PM)% was 21.2%, and the maximum OC sub(PM)% was 57.2% at T1. The maximum POC sub(PM)% was 12.9%, and the maximum SOC sub(PM)% was 49.7% at T1. Comparison of SOC and POC at T1 and T2 showed similar characteristics under favorable meteorological conditions, which indicated that transport from T1 towards T2 took place. Strong correlations between EC and carbon monoxide (CO) and odd nitrogen species (NO and NO sub(x)) were observed at T1. This indicated that EC had nearby sources, such as local traffic emissions. The EC/CO ratio derived by linear regression analysis, with units of mu g C/m super(3) and mu g/m super(3), respectively, was 0.004 at T1. Correlations were also seen between OC and SOC vs. the sum of oxidants, such as O sub(3) and NO sub(2), suggesting the secondary nature of carbons observed at T1.

Cite this document (BETA)

Readership Statistics

1 Reader on Mendeley
by Discipline
 
100% Environmental Sciences
by Academic Status
 
100% Researcher (at a non-Academic Institution)

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in