Skip to content

Processing of soot in an urban environment: case study from the Mexico City Metropolitan Area

by K S Johnson, B Zuberi, L T Molina, Mario J Molina, M J Iedema, J P Cowin, D J Gaspar, C Wang, a Laskin show all authors
Atmospheric Chemistry and Physics ()
Get full text at journal


Chemical composition, size, and mixing state of atmospheric particles are critical in determining their effects on the environment. There is growing evidence that soot aerosols play a particularly important role in both climate and human health, but still relatively little is known of their physical and chemical nature. In addition, the atmospheric residence times and removal mechanisms for soot are neither well understood nor adequately represented in regional and global climate models. To investigate the effect of locality and residence time on properties of soot and mixing state in a polluted urban environment, particles of diameter 0.2 - 2.0 mu m were collected in the Mexico City Metropolitan Area (MCMA) during the MCMA-2003 Field Campaign from various sites within the city. Individual particle analysis by different electron microscopy methods coupled with energy dispersed x-ray spectroscopy, and secondary ionization mass spectrometry show that freshly-emitted soot particles become rapidly processed in the MCMA. Whereas fresh particulate emissions from mixed-traffic are almost entirely carbonaceous, consisting of soot aggregates with liquid coatings suggestive of unburned lubricating oil and water, ambient soot particles which have been processed for less than a few hours are heavily internally mixed, primarily with ammonium sulfate. Single particle analysis suggests that this mixing occurs through several mechanisms that require further investigation. In light of previously published results, the internally-mixed nature of processed soot particles is expected to affect heterogeneous chemistry on the soot surface, including interaction with water during wet-removal.

Cite this document (BETA)

Readership Statistics

16 Readers on Mendeley
by Discipline
50% Environmental Science
25% Earth and Planetary Sciences
13% Chemistry
by Academic Status
25% Student > Ph. D. Student
25% Student > Doctoral Student
19% Other
by Country
13% United States
6% Mexico

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in