Protein adsorption onto polyester surfaces: Is there a need for surface activation?

59Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Surface hydrolysis of polyester scaffolds is a convenient technique suggested to promote protein adsorption for improving cell attachment. We have, therefore, investigated the effect of hydrolysis of polyester surfaces for protein adsorption to clarify the conditions needed. Three polyesters, poly(ethylene terephthalate) (PET), poly(lactic acid) (PLA), and poly(glycolic acid) (PGA), were selected. Adsorption was investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and quartz crystal microbalance (QCM). Hydrolyzed PET adsorbed significantly more proteins than nonhydrolyzed. Degradable polymers adsorbed at higher rates when the polymers were hydrolyzed prior to adsorption, but the same amount as noehydrolyzed, suggesting spontaneous hydrolysis during the adsorption. XPS shows that hydrolysis prior to absorption for PET results in a surface nitrogen composition of ∼14%, similar to pure protein (16%). Nonhydrolyzed PET surfaces showed only ∼7% nitrogen, indicating protein layers thinner than ∼10 nm. Adsorption to PLA and PGA shows nitrogen contents of 14-15% in both cases. SEM revealed striking differences in morphology of the protein coating. Hydrolyzed or spontaneously hydrolyzable surfaces display a pronounced fibrous structure while nonhydrolyzed surfaces give smooth structures. In combination, the results show that surface hydrolysis increase adsorption rate, but not the amount of proteins on polyesters that degrades in vivo. Surface treatment of nondegradable polyester increases the total amount of proteins and induces the formation of fibrous protein structures. Post hydrolysis treatment by acetic acid, replacing the counter-ion to a proton, further enhances protein attachment. Finally, cell attachment experiments verifies that protein adsorption increase the cell attachment to polyester surfaces. © 2006 Wiley Periodicals, Inc.

Cite

CITATION STYLE

APA

Atthoff, B., & Hilborn, J. (2007). Protein adsorption onto polyester surfaces: Is there a need for surface activation? Journal of Biomedical Materials Research - Part B Applied Biomaterials, 80(1), 121–130. https://doi.org/10.1002/jbm.b.30576

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free