Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber

79Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

In China, a rapid increase in passenger vehicles has led to the growing concern of vehicle exhaust as an important source of anthropogenic secondary organic aerosol (SOA) in megacities hard hit by haze. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) operated in China was investigated in a 30 m 3 smog chamber. Five photo-oxidation experiments were carried out at 25°C with relative humidity at around 50 %. After aging at an OH exposure of 5 × 10 6 molecules cm -3 h, the formed SOA was 12-259 times as high as primary organic aerosol (POA). The SOA production factors (PF) were 0.001-0.044 g kg -1 fuel, comparable with those from the previous studies at comparable OH exposure. This quite lower OH exposure than that in typical atmospheric conditions might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yields in this study were well fit by a one-product gas-particle partitioning model but quite lower than those of a previous study investigating SOA formation from three idling passenger vehicles (Euro 2-4). Traditional single-ring aromatic precursors and naphthalene could explain 51-90 % of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f 43 (ratio of m/z 43, mostly C 2 H 3 O +, to the total signal in mass spectrum) and f 44 (mostly CO 2 +) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar raKrevelen diagram. The slopes of ΔH : C / ΔO : C ranged from -0.59 to -0.36, suggesting that the oxidation chemistry in these experiments was a combination of carboxylic acid and alcohol/peroxide formation.

Cite

CITATION STYLE

APA

Liu, T., Wang, X., Deng, W., Hu, Q., Ding, X., Zhang, Y., … Yu, J. (2015). Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber. Atmospheric Chemistry and Physics, 15(15), 9049–9062. https://doi.org/10.5194/acp-15-9049-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free