Semi-Supervised Sparse Metric Learning Using Alternating Linearization Optimization

by Wei Liu, Shiqian Ma, Dacheng Tao, Jianzhunag Liu, Peng Liu
KDD - Knowledge and data discovery ()


In plenty of scenarios, data can be represented as vectors and then mathematically abstracted as points in a Euclidean space. Because a great number of machine learning and data mining applications need proximity measures over data, a simple and universal distance metric is desirable, and metric learning methods have been explored to produce sensible distance measures consistent with data relationship. However, most existing methods suffer from limited labeled data and expensive training. In this paper, we address these two issues through employing abundant unlabeled data and pursuing sparsity of metrics, resulting in a novel metric learning approach called semi-supervised sparse metric learning. Two important contributions of our approach are: 1) it propagates scarce prior affinities between data to the global scope and incorporates the full affinities into the metric learning; and 2) it uses an efficient alternating linearization method to directly optimize the sparse metric. Compared with conventional methods, ours can effectively take advantage of semi-supervision and automatically discover the sparse metric structure underlying input data patterns. We demonstrate the efficacy of the proposed approach with extensive experiments carried out on six datasets, obtaining clear performance gains over the state-of-the-arts.

Cite this document (BETA)

Readership Statistics

50 Readers on Mendeley
by Discipline
by Academic Status
36% Ph.D. Student
18% Student (Master)
10% Researcher (at an Academic Institution)
by Country
8% China
4% United States
2% Germany

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in