Skip to content

Sensitivity to deliberate sea salt seeding of marine clouds - Observations and model simulations

by K. Alterskjær, J. E. Kristjánsson, O. Seland
Atmospheric Chemistry and Physics ()
Get full text at journal


Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to a corresponding estimate from the Norwegian Earth System Model (NorESM). Results compare well between simulations and observations, showing that stratocumulus regions off the west coast of the major continents along with large regions over the Pacific and the Indian Oceans are susceptible. At low and mid latitudes the signal is dominated by the cloud fraction. We then carry out geo-engineering experiments with a uniform increase over ocean of 10(-9) kg m(-2) s(-1) in emissions of sea salt particles with a dry modal radius of 0.13 mu m, an emission strength and areal coverage much greater than proposed in earlier studies. The increased sea salt concentrations and the resulting change in marine cloud properties lead to a globally averaged forcing of -4.8 W m(-2) at the top of the atmosphere, more than cancelling the forcing associated with a doubling of CO2 concentrations. The forcing is large in areas found to be sensitive by using the susceptibility function, confirming its usefulness as an indicator of where to inject sea salt for maximum effect. Results also show that the effectiveness of sea salt seeding is reduced because the injected sea salt provides a large surface area for water vapor and gaseous sulphuric acid to condense on, thereby lowering the maximum supersaturation and suppressing the formation and lifetime of sulphate particles. In some areas, our simulations show an overall reduction in the CCN concentration and the number of activated cloud droplets decreases, resulting in a positive forcing.

Cite this document (BETA)

Readership Statistics

30 Readers on Mendeley
by Discipline
60% Earth and Planetary Sciences
20% Environmental Science
7% Engineering
by Academic Status
37% Student > Ph. D. Student
37% Researcher
7% Student > Doctoral Student
by Country
7% Germany
3% India
3% South Africa

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in