Skip to content

The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties - Part 1: A systematic evaluation of some available estimation techniques

by G. McFiggans, D. O. Topping, M. H. Barley
Atmospheric Chemistry and Physics ()
Get full text at journal


A large number of calculations of the absorptive partitioning of organic compounds have been made using a number of methods to predict the component vapour pressures, p(0), and activity coefficients, gamma(i), required in the calculations. The sensitivities of the predictions in terms of the condensed component masses, volatility, O:C ratio, molar mass and functionality distributions to the choice of p(0) and gamma(i) models and to the number of components to represent the organic mixture have been systematically compared. The condensed component mass was found to be highly sensitive to the vapour pressure model, and less sensitive to both the activity coefficient model and the number of components used to represent the mixture although the sensitivity to the change in property estimation method increased substantially with increased simplification in the treatment of the organic mixture. This was a general finding and was also clearly evident in terms of the predicted component functionality, O:C ratio, molar mass and volatility distributions of the condensed organic components. Within the limitations of the study, this clearly demonstrates the requirement for more accurate representation of the p(0) and gamma(i) of the semi-volatile organic proxy components used in simplified models as the degree of simplification increases. This presents an interesting paradox, since such reduction in complexity necessarily leads to divergence from the complex behaviour of real multicomponent atmospheric aerosol.

Cite this document (BETA)

Authors on Mendeley

Readership Statistics

30 Readers on Mendeley
by Discipline
43% Environmental Science
27% Chemistry
23% Earth and Planetary Sciences
by Academic Status
43% Researcher
27% Student > Ph. D. Student
10% Professor
by Country
7% United States
7% United Kingdom
3% India

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in