Simulation of the aerosol optical depth over Europe for August 1997 and a comparison with observations

44Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A chemical transport model has been extended with an aerosol model describing processes which determine the mass distribution of sulfate, nitrate, ammonium, and aerosol associated water. A specific summer episode is simulated, and the results have been compared to surface concentration measurements and with the aerosol optical depth (AOD) retrieved from satellite measurements, with a focus on the European continent. This study is one of the first to use satellite retrievals over land for this purpose. An average difference in AOD between model and satellite measurements of 0.17-0.19 is calculated, and on average only 40-50% of the observed satellite signal can be explained by our modeled aerosol. In contrast, the observed patterns of optical thickness are well simulated by the model. Also, surface concentrations of simulated aerosol components are in close agreement with measurements. Errors in the vertical distribution of sulfate, ammonium, and nitrate, and hence in the vertical distribution of hygroscopic growth, and errors in modeled optical parameters may partly account for the observed differences in AOD. However, we argue that the most important reason for the large difference is due to the fact that organic and mineral aerosol are not taken into account in this model simulation. A sensitivity study with reduced SO2 emissions in Europe showed that reduction of the emissions of SO2 in the model leads to a better agreement with surface measurements of SO2; however, calculated sulfate was less strongly influenced. Copyright 2001 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Jeuken, A., Veefkind, J. P., Dentener, F., Metzger, S., & Robles Gonzalez, C. (2001). Simulation of the aerosol optical depth over Europe for August 1997 and a comparison with observations. Journal of Geophysical Research Atmospheres, 106(D22), 28295–28311. https://doi.org/10.1029/2001JD900063

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free