Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions

21Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A lidar simulator has been applied to assess the performances of a satellite water vapour differential absorption lidar (DIAL) system. Measurements performed by the airborne Deutsches Zentrum für Luft-und Raumfahrt (DLR) water vapour DIAL on 15 May 2002 during ESA's Water Vapour Lidar Experiment (WALEX), in combination with PSU/NCAR Mesoscale Model (MM5) output, were used to obtain backscatter and water vapour fields with high resolution and accuracy. These data and model output serve as input for the simulator, allowing for the performance of satellite DIAL under highly-inhomogeneous atmospheric conditions including clouds to be assessed. The airborne measurements show an intrusion of stratospheric air into the troposphere, and MM5 data used above the DLR Falcon airplane flight altitude are characterized by very high upper tropospheric humidity levels, comparable to those associated with strong mid-latitude transport events from the troposphere to the lowermost stratosphere. Results of the simulator reveal that the maximum systematic error does not exceed 5% up to 16 km, except in the presence of thick cirrus and mid level clouds with an optical thickness up to 2 and, occasionally, inside the dry stratospheric intrusion, while the random error is less than 20% up to 16 km when spatial measurement resolutions are applied that follow the World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction (NWP). The bias is even smaller if a drier upper troposphere/lower stratosphere (UTLS) region from a reference atmosphere is considered. The results confirm the capability of satellite water vapour DIAL systems to retrieve thin structures of the tropospheric water vapour and particle backscatter fields, as well as its capability to provide low bias and random error measurements even in the presence of clouds. © 2007 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Di Girolamo, P., Behrendt, A., Kiemle, C., Wulfmeyer, V., Bauer, H., Summa, D., … Ehret, G. (2008). Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions. Remote Sensing of Environment, 112(4), 1552–1568. https://doi.org/10.1016/j.rse.2007.08.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free