Spatial-temporal variations in surface ozone in Northern China as observed during 2009-2010 and possible implications for future air quality control strategies

by G. Tang, Y. Wang, X. Li, D. Ji, S. Hsu, X. Gao
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

The Project of Atmospheric Combined Pollution Monitoring over Beijing and its Surrounding Areas, was an intensive field campaign conducted over Northern China between June 2009 and August 2011 to provide a comprehensive record of ozone (O sub(3)) and nitrogen oxides (NO sub(x)) and contribute to an in-depth understanding of air pollution in Northern China and its driving forces. In this campaign, 25 stations in an air-quality monitoring network provided regional-scale spatial coverage. In this study, we analyzed the data on O sub(3) and NO sub(x) levels obtained at 22 sites (out of 25 sites due to data availability) over Northern China between 1 September 2009 and 31 August 2010. Our goal was to investigate the O sub(3) spatial-temporal variations and control strategy in this area. Significant diurnal and seasonal variations were noted, with the highest concentrations typically found at around 03:00 p.m. (local time) and in June. The lowest concentrations were generally found during early morning hours (around 06:00 a.m.) and in December. Compared with July and August, June has increased photochemical production due to decreased cloud cover coupled with reduced O sub(3) loss due to less dry deposition, inducing an O sub(3) peak appearing in June. The averaged O sub(3) concentrations were lower in the plains area compared with the mountainous area due to the titration effects of high NO sub(x) emissions in urban areas. When the characteristics of O sub(3) pollution in different regions were distinguished by factor analysis, we found high levels of O sub(3) that exceeded China's National Standard throughout the plains, especially over Beijing and the surrounding areas. An integrated analysis with emissions data, meteorological data, and topography over Northern China found that the meteorological conditions were the main factors that dominated the spatial variations of O sub(3), with the presence of abundant emissions of precursors in this area. The smog production algorithm and space-based HCHO/NO sub(2) column ratio were used to show the O sub(3)-NO sub(x)-VOCs sensitivity and examine the control strategy of O sub(3) over Northern China. The results show that summer O sub(3) production in the plains and northern mountainous areas was sensitive to VOCs and NO sub(x), respectively. The presented results are intended to provide guidance for redefining government strategies to control the photochemical formation of air pollutants over Northern China and are relevant for developing urban agglomerations worldwide.

Cite this document (BETA)

Readership Statistics

14 Readers on Mendeley
by Discipline
 
36% Earth Sciences
 
36% Environmental Sciences
 
7% Engineering
by Academic Status
 
21% Ph.D. Student
 
21% Post Doc
 
7% Researcher (at a non-Academic Institution)
by Country
 
14% United States
 
7% Malaysia
 
7% Iran

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in