Spin angular momentum transfer in current-perpendicular nanomagnetic junctions

135Citations
Citations of this article
129Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Spin angular momentum transfer, or spin-transfer, describes the transfer of spin angular momentum between a spin-polarized current and a ferromagnetic conductor. The angular momentum transfer exerts a torque (spin-current induced torque, or spin-torque) on the ferromagnetic conductor. When its dimensions are reduced to less than 100 nm, the spin-torque can become comparable to the magnetic damping torque at a spin-polarized current of high current density (above 106 A/cm2), giving rise to a new set of current-induced dynamic excitation and magnetic switching phenomena. This has now been definitively observed in sub-100-nm current-perpendicular spin-valves and magnetic tunnel junctions, and appears promising as a basis for direct write-address of a nanomagnetic bit when the lateral bit size is reduced to well below 100 nm. An overview is presented in this paper of spin-transfer phenomena. The first part of the paper contains a brief introduction to spin-transfer, especially the characteristic dynamics associated with spin-torque. In the second part, several representative experiments are described. In the third part, a set of basic phenomenological models are introduced that describe experimental observations. The models also serve as a bridge for quantitative comparison between experiments and first-principles spin-polarized transport theory. In the last part of the paper, some device concepts based on spin-transfer-induced magnetic excitation and magnetic reversal are described. ©Copyright 2006 by International Business Machines Corporation.

Cite

CITATION STYLE

APA

Sun, J. Z. (2006). Spin angular momentum transfer in current-perpendicular nanomagnetic junctions. IBM Journal of Research and Development. IBM Corporation. https://doi.org/10.1147/rd.501.0081

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free