Strictly proper scoring rules, prediction, and estimation

3.0kCitations
Citations of this article
1.4kReaders
Mendeley users who have this article in their library.
Get full text

Abstract

Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the predictive distribution and on the event or value that materializes. A scoring rule is proper if the forecaster maximizes the expected score for an observation drawn from the distribution F if he or she issues the probabilistic forecast F, rather than G ≠ F. It is strictly proper if the maximum is unique. In prediction problems, proper scoring rules encourage the forecaster to make careful assessments and to be honest. In estimation problems, strictly proper scoring rules provide attractive loss and utility functions that can be tailored to the problem at hand. This article reviews and develops the theory of proper scoring rules on general probability spaces, and proposes and discusses examples thereof. Proper scoring rules derive from convex functions and relate to information measures, entropy functions, and Bregman divergences. In the case of categorical variables, we prove a rigorous version of the Savage representation. Examples of scoring rules for probabilistic forecasts in the form of predictive densities include the logarithmic, spherical, pseudospherical, and quadratic scores. The continuous ranked probability score applies to probabilistic forecasts that take the form of predictive cumulative distribution functions. It generalizes the absolute error and forms a special case of a new and very general type of score, the energy score. Like many other scoring rules, the energy score admits a kernel representation in terms of negative definite functions, with links to inequalities of Hoeffding type, in both univariate and multivariate settings. Proper scoring rules for quantile and interval forecasts are also discussed. We relate proper scoring rules to Bayes factors and to cross-validation, and propose a novel form of cross-validation known as random-fold cross-validation. A case study on probabilistic weather forecasts in the North American Pacific Northwest illustrates the importance of propriety. We note optimum score approaches to point and quantile estimation, and propose the intuitively appealing interval score as a utility function in interval estimation that addresses width as well as coverage. © 2007 American Statistical Association.

Cite

CITATION STYLE

APA

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378. https://doi.org/10.1198/016214506000001437

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free