Skip to content

Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance

by Mary Laura Lind, Daniel Eumine Suk, The Vinh Nguyen, Eric M V Hoek
Environmental Science and Technology ()
Get full text at journal


Herein we report on the formation and characterization of pure polyamide thin film composite (TFC) and zeolite-polyamide thin film nanocomposite (TFN) reverse osmosis (RO) membranes. Four different physical-chemical post-treatment combinations were applied after the interfacial polymerization reaction to change the molecular structure of polyamide and zeolite-polyamide thin films. Both TFC and TFN hand-cast membranes were more permeable, hydrophilic, and rough than a commercial seawater RO membrane. Salt rejection by TFN membranes was consistently below that of hand-cast TFC membranes; however, two TFN membranes exhibited 32 g/L NaCl rejections above 99.4%, which was better than the commercial membrane under the test conditions employed. The nearly defect-free TFN films that produced such high rejections were achieved only with wet curing, regardless of other post-treatments. Polyamide films formed in the presence of zeolite nanoparticles were less cross-linked than similarly cast pure polyamide films. At the very low nanoparticle loadings evaluated, differences between pure polyamide and zeolite-polyamide membrane water and salt permeability correlated weakly with extent of cross-linking of the polyamide film, which suggests that defects and molecular-sieving largely govern transport through zeolite-polyamide thin film nanocomposite membranes.

Cite this document (BETA)

Authors on Mendeley

Readership Statistics

60 Readers on Mendeley
by Discipline
35% Engineering
18% Materials Science
18% Chemistry
by Academic Status
43% Student > Ph. D. Student
13% Researcher
12% Student > Master
by Country
3% United States
2% Germany

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in