Skip to content

Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

by Y. Xie, F. Paulot, W. P L Carter, C. G. Nolte, D. J. Luecken, W. T. Hutzell, P. O. Wennberg, R. C. Cohen, R. W. Pinder show all authors
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment-North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA (United States Environmental Protection Agency) CMAQ model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2) recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination on the southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4-9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs) and their relationship with O3 by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 hours or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of isoprene oxidation pathways, the rate of NOx recycling from isoprene nitrates, and the fate of the secondary, tertiary, and further oxidation products of isoprene.

Cite this document (BETA)

Readership Statistics

18 Readers on Mendeley
by Discipline
 
61% Earth and Planetary Sciences
 
22% Environmental Science
 
11% Chemistry
by Academic Status
 
39% Researcher
 
33% Student > Ph. D. Student
 
11% Student > Bachelor
by Country
 
11% United States
 
6% Austria

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in