Skip to content

Variability of aerosol optical properties in the Western Mediterranean Basin

by M. Pandolfi, M. Cusack, A. Alastuey, X. Querol
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

Aerosol light scattering, absorption and particulate matter (PM) concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB) which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR). Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm) were 26.6 +/- 23.2 Mm(-1) and 4.3 +/- 2.7 Mm(-1), respectively and the mean aerosol absorption coefficient (@ 637 nm) was 2.8 +/- 2.2 Mm(-1). Mean values of Single Scattering Albedo (SSA) and Angstrom exponent ((a) over circle) (calculated from 450 nm to 635 nm) at MSY were 0.90 +/- 0.05 and 1.3 +/- 0.5 respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Angstrom exponents. Mass scattering cross sections (MSC) for fine mass and sulfate at 635 nm were 2.8 +/- 0.5 m(2) g(-1) and 11.8 +/- 2.2 m(2) g(-1), respectively, while the mean aerosol absorption cross section (MAC) was 10.4 +/- 2.0 m(2) g(-1). The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Angstrom exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere ((a) over circle = 1.5 +/- 0.1) while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly dominated by coarser particles ((a) over circle = 1.0 +/- 0.4). The sea breeze played an important role in transporting pollutants from the developed WMB coastlines towards inland rural areas, changing the optical properties of aerosols. Aerosol scattering and backscattering coefficients increased by around 40% in the afternoon when the sea breeze was fully developed while the absorption coefficient increased by more than 100% as a consequence of the increase in the equivalent black carbon concentration (EBC) observed at MSY under sea breeze circulation.

Cite this document (BETA)

Authors on Mendeley

Readership Statistics

7 Readers on Mendeley
by Discipline
 
57% Earth and Planetary Sciences
 
29% Environmental Science
 
14% Chemistry
by Academic Status
 
43% Researcher
 
29% Student > Ph. D. Student
 
14% Other

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in