Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit

288Citations
Citations of this article
367Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

•Motivated by the urgent need to understand how water stress-induced embolism limits the survival and recovery of plants during drought, the linkage between water-stress tolerance and xylem cavitation resistance was examined in one of the world's most drought resistant conifer genera, Callitris. •Four species were subjected to drought treatments of -5, -8 and -10 MPa for a period of 3-4 wk, after which plants were rewatered. Transpiration, basal growth and leaf water potential were monitored during and after drought. •Lethal water potential was correlated with the tension producing a 50% loss of stem hydraulic conductivity. The most resilient species suffered minimal embolism and recovered gas exchange within days of rewatering from -10 MPa, while the most sensitive species suffered major embolism and recovered very slowly. The rate of repair of water transport in the latter case was equal to the rate of basal area growth, indicating xylem reiteration as the primary means of hydraulic repair. •The survival of, and recovery from, water stress in Callitris are accurately predicted by the physiology of the stem water-transport system. As the only apparent means of xylem repair after embolism, basal area growth is a critical part of this equation. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

Cite

CITATION STYLE

APA

Brodribb, T. J., Bowman, D. J. M. S., Nichols, S., Delzon, S., & Burlett, R. (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist, 188(2), 533–542. https://doi.org/10.1111/j.1469-8137.2010.03393.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free