Megathrust Shear Modulated by Albite Metasomatism in Subduction Mélanges

10Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aseismic megathrust slip downdip of the seismogenic zone is accommodated by either steady creep or episodic slow slip events (SSEs). However, the geological conditions defining the rheology of megathrust slip remain elusive. We examined exhumed subduction mélanges on Kyushu, Japan, which deformed at ∼370–500°C under greenschist to epidote-amphibolite facies conditions, comparable to warm-slab environments. The mélanges recorded fluid release and viscous shear localization associated with metasomatic reactions between juxtaposed metapelitic and metabasaltic rocks. Metasomatic reactions caused albitization of metapelite, resulting in depth-dependent changes to megathrust rheology. In a mélange deformed at ∼370°C, very fine grained reaction products (metasomatic albite) facilitated grain boundary diffusion creep at stresses of ∼45 MPa, less than those in the surrounding metabasalt. Mineralogical and chemical changes during metasomatic reactions, and their field content, imply an onset of albite metasomatism at ∼350°C. Albite metasomatism therefore potentially contributed to decreased megathrust strength around the inferred thermally controlled base of the seismogenic zone. In a mélange deformed near the mantle wedge corner at ∼500°C, metasomatic reactions promoted local quartz vein formation and localized viscous shear at slow slip strain rates, during which the coarse-grained metasomatic albite behaved as relatively rigid blocks in a viscous matrix. We suggest that albite metasomatism can facilitate changes in a megathrust slip mode with depth and may explain why slip mode changes from creep to SSEs with tremor with increasing depth.

Cite

CITATION STYLE

APA

Ujiie, K., Noro, K., Shigematsu, N., Fagereng, Å., Nishiyama, N., Tulley, C. J., … Kagi, H. (2022). Megathrust Shear Modulated by Albite Metasomatism in Subduction Mélanges. Geochemistry, Geophysics, Geosystems, 23(8). https://doi.org/10.1029/2022GC010569

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free