Effect of pH in the hydrothermal preparation of Bi2WO6 nanostructures

15Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

In this study, Bi2WO6 was prepared by the hydrothermal method. The effects of reaction temperature (150/170/200 °C) and reaction time (6/12/24 h) were investigated. The role of strongly acidic pH (1 >) and the full range between 0.3 and 13.5 were studied first. Every sample was studied by XRD and SEM; furthermore, the Bi2WO6 samples prepared at different temperatures were examined in detail by EDX and TEM, as well as FT-IR, Raman and UV-vis spectroscopies. It was found that changing the temperature and time slightly influenced the crystallinity and morphology of the products. The most crystallized product formed at 200 °C, 24 h. The pure, sheet-like Bi2WO6, prepared at 200 °C, 24 h, and 0.3 pH, gradually transformed into a mixture of Bi2WO6 and Bi3.84W0.16O6.24 with increasing pH. The nanosheets turned into a morphology of mixed shapes in the acidic range (fibers, sheets, irregular forms), and became homogenous cube- and octahedral-like shapes in the alkaline range. Their band gaps were calculated and were found to vary between 2.66 and 2.59 eV as the temperature increased. The specific surface area measurements revealed that reducing the temperature favors the formation of a larger surface area (35.8/26/21.6 m2/g belonging to 150/170/200 °C, respectively).

Cite

CITATION STYLE

APA

Nagyné-Kovács, T., Shahnazarova, G., Lukács, I. E., Szabó, A., Hernadi, K., Igricz, T., … Pokol, G. (2019). Effect of pH in the hydrothermal preparation of Bi2WO6 nanostructures. Materials, 12(11). https://doi.org/10.3390/ma12111728

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free