The weighted Monge-Ampère energy of quasiplurisubharmonic functions

Citations of this article
Mendeley users who have this article in their library.


We study degenerate complex Monge-Ampère equations on a compact Kähler manifold (X, ω). We show that the complex Monge-Ampère operator (ω + d dc ṡ)n is well defined on the class E (X, ω) of ω-plurisubharmonic functions with finite weighted Monge-Ampère energy. The class E (X, ω) is the largest class of ω-psh functions on which the Monge-Ampère operator is well defined and the comparison principle is valid. It contains several functions whose gradient is not square integrable. We give a complete description of the range of the operator (ω + d dc ṡ)n on E (X, ω), as well as on some of its subclasses. We also study uniqueness properties, extending Calabi's result to this unbounded and degenerate situation, and we give applications to complex dynamics and to the existence of singular Kähler-Einstein metrics. © 2007 Elsevier Inc. All rights reserved.




Guedj, V., & Zeriahi, A. (2007). The weighted Monge-Ampère energy of quasiplurisubharmonic functions. Journal of Functional Analysis, 250(2), 442–482.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free