Gender-specific protection from microvessel rarefaction in female hypertensive rats

Citations of this article
Mendeley users who have this article in their library.


Epidemiologic studies reveal that women have a significantly lower age- adjusted morbidity and mortality from cardiovascular disease than men, suggesting that gender is a cardiovascular disease risk factor. The mechanism of the 'gender protection' is unknown. In this study, we investigated the microvascular remodeling in reduced renal mass plus a high salt (4.0% NaCl) diet model of hypertension (RRM + HS). We hypothesized that women would be protected from the increase in blood pressure and from the microvascular rarefaction associated with RRM + HS hypertension. Studies were designed to determine whether female rats were less susceptible to changes in microvessel density during RRM + HS. Microvessel density was measured in male and female low salt (0.4% LS) sham-operated controls (Sham + LS) and after 3 days or 4 weeks of RRM + HS hypertension. The microcirculation of hind limb (medial and lateral gastrocnemius, plantaris, soleus) muscles was visualized using rhodamine-labeled Griffonia simplicifolia I lectin. Tissue sections were examined by videomicroscopy and microvessel density was determined by quantitative stereology. As shown previously, mean arterial pressure increased to 160 ± 8 mm Hg and microvessel density decreased (>30% decrease in all beds) in male RRM + HS. In contrast, mean arterial pressure of female RRM + HS rats was modestly increased from 101 ± 2 to 118 ± 4 mm Hg. Despite previous results showing a reduction in microvessel density of both normotensive and hypertensive male rats on a high salt diet, microvessel density of female RRM + HS rats was not reduced at either time. These results suggest that gender protection in the RRM rat extends beyond an attenuation of the increase in pressure to an immunity from microvascular rarefaction.




Papanek, P. E., Rieder, M. J., Lombard, J. H., & Greene, A. S. (1998). Gender-specific protection from microvessel rarefaction in female hypertensive rats. American Journal of Hypertension, 11(8 I), 998–1005.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free