Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers

29Citations
Citations of this article
114Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Discovering how membrane proteins recognize signals and passage molecules remains challenging. Life depends on compartmentalizing these processes into dynamic lipid bilayers that are technically difficult to work with. Several polymers have proven adept at separating the responsible machines intact for detailed analysis of their structures and interactions. Styrene maleic acid (SMA) co-polymers efficiently solubilize membranes into native nanodiscs and, unlike amphipols and membrane scaffold proteins, require no potentially destabilizing detergents. Here we review progress with the SMA lipid particle (SMALP) system and its impacts including three dimensional structures and biochemical functions of peripheral and transmembrane proteins. Polymers systems are emerging to tackle the remaining challenges for wider use and future applications including in membrane proteomics, structural biology of transient or unstable states, and discovery of ligand and drug-like molecules specific for native lipid-bound states.

Cite

CITATION STYLE

APA

Esmaili, M., & Overduin, M. (2018, February 1). Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers. Biochimica et Biophysica Acta - Biomembranes. Elsevier B.V. https://doi.org/10.1016/j.bbamem.2017.10.019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free