As one of the most active areas in laser protection, organic/inorganic hybrid functional materials have been expected to play an extremely important role in the field of optical limiting. The optical limiting performance of the CH3NH3PbI3 perovskite:poly(N-vinylcarbazole) (weight ratio: 1 : 1) blends (hereafter abbreviated as CP) was experimentally studied in DMF and in a poly(methylmethlacrylate) (PMMA) matrix, respectively, using an open aperture Z-scan method. In contrast to the CP dispersed in DMF, which showed no apparent nonlinear optical (NLO) response at both 532 and 1064 nm, after annealing at 200 °C in N2 for 30 min, a saturable absorption (SA) response was observed in the same DMF dispersion under the excitation of 532 nm laser. At 1064 nm, the annealed sample displayed different NLO responses: SA at the lower pulse energy and reverse saturable absorption (RSA) at the higher pulse energy. Both the 3 wt% and 6 wt% CP-doped PMMA composite films exhibited a typical RSA response, larger nonlinear absorption coefficient and superior optical limiting performance when compared to the same blends in DMF dispersion.
CITATION STYLE
Bai, T., Dong, N., Cheng, H., Cheng, Q., Wang, J., & Chen, Y. (2017). CH3NH3PbI3 perovskite:poly(N-vinylcarbazole) blends for broadband optical limiting. RSC Advances, 7(4), 1809–1813. https://doi.org/10.1039/c6ra25276a
Mendeley helps you to discover research relevant for your work.