Some Approximations to the Binomial Distribution Function

  • Bahadur R
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Let $p$ be given, $0 < p < 1$. Let $n$ and $k$ be positive integers such that $np \leqq k \leqq n$, and let $B_n(k) = \sum^n_{r=k} \binom{n}{r} p^rq^{n-r}$, where $q = 1 - p$. It is shown that $B_n(k) = \big\lbrack\binom{n}{k} p^kq^{n - k}\big\rbrack qF(n + 1, 1; k + 1; p),$ where $F$ is the hypergeometric function. This representation seems useful for numerical and theoretical investigations of small tail probabilities. The representation yields, in particular, the result that, with $A_n(k) = \big\lbrack\binom{n}{k}p^kq^{n - k + 1}\big\rbrack \lbrack(k + 1)/(k + 1 - (n + 1)p)\rbrack$, we have $1 \leqq A_n(k)/B_n(k) \leqq 1 + x^{-2}$, where $x = (k - np)/(npq)^{\frac{1}{2}}$. Next, let $N_n(k)$ denote the normal approximation to $B_n(k)$, and let $C_n(k) = (x + \sqrt{q/np}) \sqrt{2\pi} \exp \lbrack x^2/2 \rbrack$. It is shown that $(A_nN_nC_n)/B_n \rightarrow 1$ as $n \rightarrow \infty$, provided only that $k$ varies with $n$ so that $x \geqq 0$ for each $n$. It follows hence that $A_n/B_n \rightarrow 1$ if and only if $x \rightarrow \infty$ (i.e. $B_n \rightarrow 0$). It also follows that $N_nN_n \rightarrow 1$ if and only if $A_nC_n \rightarrow 1$. This last condition reduces to $x = o(n^{1/6})$ for certain values of $p$, but is weaker for other values; in particular, there are values of $p$ for which $N_n/B_n$ can tend to one without even the requirement that $k/n$ tend to $p$.

Cite

CITATION STYLE

APA

Bahadur, R. R. (1960). Some Approximations to the Binomial Distribution Function. The Annals of Mathematical Statistics, 31(1), 43–54. https://doi.org/10.1214/aoms/1177705986

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free