The hydration of cement is often modeled as a phase boundary nucleation and growth (pBNG) process. Classical pBNG models, based on the use of isotropic and constant growth rate of the main hydrate, that is, calcium-silicate-hydrate (C-S-H), are unable to explain the lack of any significant effect of the water-to-cement (w/c) ratio on the hydration kinetics of cement. This paper presents a modified form of the pBNG model, in which the anisotropic growth of C-S-H is allowed to vary in relation to the nonlinear evolution of its supersaturation in solution. Results show that once the supercritical C-S-H nuclei form, their growth remains confined within a region in proximity to the cement particles. This is hypothesized to be a manifestation of the sedimentation of cement particles, which imposes a space constraint for C-S-H growth. In pastes wherein the sedimentation of cement particles is disrupted, the hydration kinetics are no longer unresponsive to changes in w/c. Unlike C-S-H, the ions in solution are not confined, and hence, the supersaturation-dependent growth rate of C-S-H diminishes monotonically with increasing w/c. Overall, the outcomes of this work highlight important aspects that need to be considered in employing pBNG models for simulating hydration of cement-based systems.
CITATION STYLE
Ley-Hernandez, A. M., Lapeyre, J., Cook, R., Kumar, A., & Feys, D. (2018). Elucidating the Effect of Water-To-Cement Ratio on the Hydration Mechanisms of Cement. ACS Omega, 3(5), 5092–5105. https://doi.org/10.1021/acsomega.8b00097
Mendeley helps you to discover research relevant for your work.