Thermodynamic investigation of phase transformation in Sn anode for magnesium batteries

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Metallic Mg anodes are incompatible with conventional electrolytes, such as Mg(BF4)2 or Mg(ClO4)2, due to the formation of a passivation layer that blocks the transport of Mg ions, thus limiting the selection of electrolytes and cathodes. Alloying anode materials for Mg batteries, such as Sn and its intermetallics, have recently been proposed as a new class of anode materials for Mg-ion batteries to address the issues of incompatibility with the conventional electrolytes. However, the large changes in the volume of the Mg-Sn alloy during cycling lead to poor Coulombic efficiency and rapid capacity degradation. The underlying reasons for how the structural changes hamper electrochemical performance remain unclear. In this work, we perform a theoretical study of the Mg-Sn alloys to have a deeper insight into the alloying process and the phase transformation in the Sn anode. This work is the first in-depth computational study that combines density functional theory and cluster expansion to investigate the phase transition process in the Mg-Sn system that includes Mg2Sn, α-Sn, and β-Sn structures. We considered three possible routes for the transformation pathway from Mg2Sn to β-Sn: Mg2Sn → α-Sn → β-Sn, Mg2Sn → β-Sn, and Mg2Sn → amorphous phase → β-Sn. Our study shows that the transformation of Sn between its α- and β-phases hinders the alloying process. This hindrance, together with the amorphization of the alloy, is revealed to be the key factor to understand the poor electrochemical performance of the Mg-Sn alloy.

Cite

CITATION STYLE

APA

Vincent, S., Kleiven, D., Garcia Lastra, J. M., & Chang, J. H. (2022). Thermodynamic investigation of phase transformation in Sn anode for magnesium batteries. APL Materials, 10(7). https://doi.org/10.1063/5.0087046

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free